1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
//! A Hardware Abstraction Layer (HAL) for embedded systems //! //! **NOTE** This HAL is still is active development. Expect the traits presented here to be //! tweaked, split or be replaced wholesale before being stabilized, i.e. before hitting the 1.0.0 //! release. That being said there's a part of the HAL that's currently considered unproven and is //! hidden behind an "unproven" Cargo feature. This API is even more volatile and it's exempt from //! semver rules: it can change in a non-backward compatible fashion or even disappear in between //! patch releases. //! //! # Design goals //! //! The HAL //! //! - Must *erase* device specific details. Neither register, register blocks or magic values should //! appear in the API. //! //! - Must be generic *within* a device and *across* devices. The API to use a serial interface must //! be the same regardless of whether the implementation uses the USART1 or UART4 peripheral of a //! device or the UART0 peripheral of another device. //! //! - Where possible must *not* be tied to a specific asynchronous model. The API should be usable //! in blocking mode, with the `futures` model, with an async/await model or with a callback model. //! (cf. the [`nb`] crate) //! //! - Must be minimal, and thus easy to implement and zero cost, yet highly composable. People that //! want higher level abstraction should *prefer to use this HAL* rather than *re-implement* //! register manipulation code. //! //! - Serve as a foundation for building an ecosystem of platform agnostic drivers. Here driver //! means a library crate that lets a target platform interface an external device like a digital //! sensor or a wireless transceiver. The advantage of this system is that by writing the driver as //! a generic library on top of `embedded-hal` driver authors can support any number of target //! platforms (e.g. Cortex-M microcontrollers, AVR microcontrollers, embedded Linux, etc.). The //! advantage for application developers is that by adopting `embedded-hal` they can unlock all //! these drivers for their platform. //! //! # Out of scope //! //! - Initialization and configuration stuff like "ensure this serial interface and that SPI //! interface are not using the same pins". The HAL will focus on *doing I/O*. //! //! # Reference implementation //! //! The [`stm32f30x-hal`] crate contains a reference implementation of this HAL. //! //! [`stm32f30x-hal`]: https://crates.io/crates/stm32f30x-hal/0.1.0 //! //! # Platform agnostic drivers //! //! You can find platform agnostic drivers built on top of `embedded-hal` on crates.io by [searching //! for the *embedded-hal* keyword](https://crates.io/keywords/embedded-hal). //! //! If you writing a platform agnostic driver yourself you are highly encouraged to [add the //! embedded-hal keyword](https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata) //! to your crate before publishing it! //! //! # Detailed design //! //! ## Traits //! //! The HAL is specified as traits to allow generic programming. These traits make use of the //! [`nb`][] crate (*please go read that crate documentation before continuing*) to abstract over //! the asynchronous model and to also provide a blocking operation mode. //! //! [`nb`]: https://crates.io/crates/nb //! //! Here's how a HAL trait may look like: //! //! ``` //! extern crate nb; //! //! /// A serial interface //! pub trait Serial { //! /// Error type associated to this serial interface //! type Error; //! //! /// Reads a single byte //! fn read(&mut self) -> nb::Result<u8, Self::Error>; //! //! /// Writes a single byte //! fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error>; //! } //! ``` //! //! The `nb::Result` enum is used to add a [`WouldBlock`] variant to the errors //! of the serial interface. As explained in the documentation of the `nb` crate this single API, //! when paired with the macros in the `nb` crate, can operate in a blocking manner, or in a //! non-blocking manner compatible with `futures` and with the `await!` operator. //! //! [`WouldBlock`]: https://docs.rs/nb/0.1.0/nb/enum.Error.html //! //! Some traits, like the one shown below, may expose possibly blocking APIs that can't fail. In //! those cases `nb::Result<_, Void>` is used. //! //! ``` //! extern crate nb; //! extern crate void; //! //! use void::Void; //! //! /// A count down timer //! pub trait CountDown { //! // .. //! //! /// "waits" until the count down is over //! fn wait(&mut self) -> nb::Result<(), Void>; //! } //! //! # fn main() {} //! ``` //! //! ## Suggested implementation //! //! The HAL traits should be implemented for device crates generated via [`svd2rust`] to maximize //! code reuse. //! //! [`svd2rust`]: https://crates.io/crates/svd2rust //! //! Shown below is an implementation of some of the HAL traits for the [`stm32f30x`] crate. This //! single implementation will work for *any* microcontroller in the STM32F30x family. //! //! [`stm32f30x`]: https://crates.io/crates/stm32f30x //! //! ``` //! // crate: stm32f30x-hal //! // An implementation of the `embedded-hal` traits for STM32F30x microcontrollers //! //! extern crate embedded_hal as hal; //! extern crate nb; //! //! // device crate //! extern crate stm32f30x; //! //! use stm32f30x::USART1; //! //! /// A serial interface //! // NOTE generic over the USART peripheral //! pub struct Serial<USART> { usart: USART } //! //! // convenience type alias //! pub type Serial1 = Serial<USART1>; //! //! /// Serial interface error //! pub enum Error { //! /// Buffer overrun //! Overrun, //! // omitted: other error variants //! } //! //! impl hal::serial::Read<u8> for Serial<USART1> { //! type Error = Error; //! //! fn read(&mut self) -> nb::Result<u8, Error> { //! // read the status register //! let isr = self.usart.isr.read(); //! //! if isr.ore().bit_is_set() { //! // Error: Buffer overrun //! Err(nb::Error::Other(Error::Overrun)) //! } //! // omitted: checks for other errors //! else if isr.rxne().bit_is_set() { //! // Data available: read the data register //! Ok(self.usart.rdr.read().bits() as u8) //! } else { //! // No data available yet //! Err(nb::Error::WouldBlock) //! } //! } //! } //! //! impl hal::serial::Write<u8> for Serial<USART1> { //! type Error = Error; //! //! fn write(&mut self, byte: u8) -> nb::Result<(), Error> { //! // Similar to the `read` implementation //! # Ok(()) //! } //! //! fn flush(&mut self) -> nb::Result<(), Error> { //! // Similar to the `read` implementation //! # Ok(()) //! } //! } //! //! # fn main() {} //! ``` //! //! ## Intended usage //! //! Thanks to the [`nb`] crate the HAL API can be used in a blocking manner, //! with `futures` or with the `await` operator using the [`block!`], //! [`try_nb!`] and [`await!`] macros respectively. //! //! [`block!`]: https://docs.rs/nb/0.1.0/nb/macro.block.html //! [`try_nb!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate //! [`await!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate //! //! ### Blocking mode //! //! An example of sending a string over the serial interface in a blocking //! fashion: //! //! ``` //! extern crate embedded_hal; //! #[macro_use(block)] //! extern crate nb; //! //! use stm32f30x_hal::Serial1; //! use embedded_hal::serial::Write; //! //! # fn main() { //! let mut serial: Serial1 = { //! // .. //! # Serial1 //! }; //! //! for byte in b"Hello, world!" { //! // NOTE `block!` blocks until `serial.write()` completes and returns //! // `Result<(), Error>` //! block!(serial.write(*byte)).unwrap(); //! } //! # } //! //! # mod stm32f30x_hal { //! # extern crate void; //! # use self::void::Void; //! # pub struct Serial1; //! # impl Serial1 { //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { //! # Ok(()) //! # } //! # } //! # } //! ``` //! //! ### `futures` //! //! An example of running two tasks concurrently. First task: blink an LED every //! second. Second task: loop back data over the serial interface. //! //! ``` //! extern crate embedded_hal as hal; //! extern crate futures; //! extern crate void; //! //! #[macro_use(try_nb)] //! extern crate nb; //! //! use hal::prelude::*; //! use futures::{ //! future, //! Async, //! Future, //! }; //! use futures::future::Loop; //! use stm32f30x_hal::{Led, Serial1, Timer6}; //! use void::Void; //! //! /// `futures` version of `CountDown.wait` //! /// //! /// This returns a future that must be polled to completion //! fn wait<T>(mut timer: T) -> impl Future<Item = T, Error = Void> //! where //! T: hal::timer::CountDown, //! { //! let mut timer = Some(timer); //! future::poll_fn(move || { //! try_nb!(timer.as_mut().unwrap().wait()); //! //! Ok(Async::Ready(timer.take().unwrap())) //! }) //! } //! //! /// `futures` version of `Serial.read` //! /// //! /// This returns a future that must be polled to completion //! fn read<S>(mut serial: S) -> impl Future<Item = (S, u8), Error = S::Error> //! where //! S: hal::serial::Read<u8>, //! { //! let mut serial = Some(serial); //! future::poll_fn(move || { //! let byte = try_nb!(serial.as_mut().unwrap().read()); //! //! Ok(Async::Ready((serial.take().unwrap(), byte))) //! }) //! } //! //! /// `futures` version of `Serial.write` //! /// //! /// This returns a future that must be polled to completion //! fn write<S>(mut serial: S, byte: u8) -> impl Future<Item = S, Error = S::Error> //! where //! S: hal::serial::Write<u8>, //! { //! let mut serial = Some(serial); //! future::poll_fn(move || { //! try_nb!(serial.as_mut().unwrap().write(byte)); //! //! Ok(Async::Ready(serial.take().unwrap())) //! }) //! } //! //! fn main() { //! // HAL implementers //! let timer: Timer6 = { //! // .. //! # Timer6 //! }; //! let serial: Serial1 = { //! // .. //! # Serial1 //! }; //! let led: Led = { //! // .. //! # Led //! }; //! //! // Tasks //! let mut blinky = future::loop_fn::<_, (), _, _>( //! (led, timer, true), //! |(mut led, mut timer, state)| { //! wait(timer).map(move |timer| { //! if state { //! led.on(); //! } else { //! led.off(); //! } //! //! Loop::Continue((led, timer, !state)) //! }) //! }); //! //! let mut loopback = future::loop_fn::<_, (), _, _>(serial, |mut serial| { //! read(serial).and_then(|(serial, byte)| { //! write(serial, byte) //! }).map(|serial| { //! Loop::Continue(serial) //! }) //! }); //! //! // Event loop //! loop { //! blinky.poll().unwrap(); // NOTE(unwrap) E = Void //! loopback.poll().unwrap(); //! # break; //! } //! } //! //! # mod stm32f30x_hal { //! # extern crate void; //! # use self::void::Void; //! # pub struct Timer6; //! # impl ::hal::timer::CountDown for Timer6 { //! # type Time = (); //! # //! # fn start<T>(&mut self, _: T) where T: Into<()> {} //! # fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # } //! # //! # pub struct Serial1; //! # impl ::hal::serial::Read<u8> for Serial1 { //! # type Error = Void; //! # fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } //! # } //! # impl ::hal::serial::Write<u8> for Serial1 { //! # type Error = Void; //! # fn flush(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # } //! # //! # pub struct Led; //! # impl Led { //! # pub fn off(&mut self) {} //! # pub fn on(&mut self) {} //! # } //! # } //! ``` //! //! ### `await` //! //! Same example as above but using `await!` instead of `futures`. //! //! ``` //! #![feature(generator_trait)] //! #![feature(generators)] //! //! extern crate embedded_hal as hal; //! //! #[macro_use(await)] //! extern crate nb; //! //! use std::ops::Generator; //! use std::pin::Pin; //! //! use hal::prelude::*; //! use stm32f30x_hal::{Led, Serial1, Timer6}; //! //! fn main() { //! // HAL implementers //! let mut timer: Timer6 = { //! // .. //! # Timer6 //! }; //! let mut serial: Serial1 = { //! // .. //! # Serial1 //! }; //! let mut led: Led = { //! // .. //! # Led //! }; //! //! // Tasks //! let mut blinky = (move || { //! let mut state = false; //! loop { //! // `await!` means "suspend / yield here" instead of "block until //! // completion" //! await!(timer.wait()).unwrap(); // NOTE(unwrap) E = Void //! //! state = !state; //! //! if state { //! led.on(); //! } else { //! led.off(); //! } //! } //! }); //! //! let mut loopback = (move || { //! loop { //! let byte = await!(serial.read()).unwrap(); //! await!(serial.write(byte)).unwrap(); //! } //! }); //! //! // Event loop //! loop { //! Pin::new(&mut blinky).resume(); //! Pin::new(&mut loopback).resume(); //! # break; //! } //! } //! //! # mod stm32f30x_hal { //! # extern crate void; //! # use self::void::Void; //! # pub struct Serial1; //! # impl Serial1 { //! # pub fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # } //! # pub struct Timer6; //! # impl Timer6 { //! # pub fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # } //! # pub struct Led; //! # impl Led { //! # pub fn off(&mut self) {} //! # pub fn on(&mut self) {} //! # } //! # } //! ``` //! //! ## Generic programming and higher level abstractions //! //! The core of the HAL has been kept minimal on purpose to encourage building **generic** higher //! level abstractions on top of it. Some higher level abstractions that pick an asynchronous model //! or that have blocking behavior and that are deemed useful to build other abstractions can be //! found in the `blocking` module and, in the future, in the `futures` and `async` modules. //! //! Some examples: //! //! **NOTE** All the functions shown below could have been written as trait //! methods with default implementation to allow specialization, but they have //! been written as functions to keep things simple. //! //! - Write a whole buffer to a serial device in blocking a fashion. //! //! ``` //! extern crate embedded_hal as hal; //! #[macro_use(block)] //! extern crate nb; //! //! use hal::prelude::*; //! //! fn write_all<S>(serial: &mut S, buffer: &[u8]) -> Result<(), S::Error> //! where //! S: hal::serial::Write<u8> //! { //! for &byte in buffer { //! block!(serial.write(byte))?; //! } //! //! Ok(()) //! } //! //! # fn main() {} //! ``` //! //! - Blocking serial read with timeout //! //! ``` //! extern crate embedded_hal as hal; //! extern crate nb; //! //! use hal::prelude::*; //! //! enum Error<E> { //! /// Serial interface error //! Serial(E), //! TimedOut, //! } //! //! fn read_with_timeout<S, T>( //! serial: &mut S, //! timer: &mut T, //! timeout: T::Time, //! ) -> Result<u8, Error<S::Error>> //! where //! T: hal::timer::CountDown, //! S: hal::serial::Read<u8>, //! { //! timer.start(timeout); //! //! loop { //! match serial.read() { //! // raise error //! Err(nb::Error::Other(e)) => return Err(Error::Serial(e)), //! Err(nb::Error::WouldBlock) => { //! // no data available yet, check the timer below //! }, //! Ok(byte) => return Ok(byte), //! } //! //! match timer.wait() { //! Err(nb::Error::Other(e)) => { //! // The error type specified by `timer.wait()` is `!`, which //! // means no error can actually occur. The Rust compiler //! // still forces us to provide this match arm, though. //! unreachable!() //! }, //! // no timeout yet, try again //! Err(nb::Error::WouldBlock) => continue, //! Ok(()) => return Err(Error::TimedOut), //! } //! } //! } //! //! # fn main() {} //! ``` //! //! - Asynchronous SPI transfer //! //! ``` //! #![feature(conservative_impl_trait)] //! #![feature(generators)] //! #![feature(generator_trait)] //! //! extern crate embedded_hal as hal; //! #[macro_use(await)] //! extern crate nb; //! //! use std::ops::Generator; //! //! /// Transfers a byte buffer of size N //! /// //! /// Returns the same byte buffer but filled with the data received from the //! /// slave device //! fn transfer<S, B>( //! mut spi: S, //! mut buffer: [u8; 16], // NOTE this should be generic over the size of the array //! ) -> impl Generator<Return = Result<(S, [u8; 16]), S::Error>, Yield = ()> //! where //! S: hal::spi::FullDuplex<u8>, //! { //! move || { //! let n = buffer.len(); //! for i in 0..n { //! await!(spi.send(buffer[i]))?; //! buffer[i] = await!(spi.read())?; //! } //! //! Ok((spi, buffer)) //! } //! } //! //! # fn main() {} //! ``` //! //! - Buffered serial interface with periodic flushing in interrupt handler //! //! ``` //! extern crate embedded_hal as hal; //! extern crate nb; //! extern crate void; //! //! use hal::prelude::*; //! use void::Void; //! //! fn flush<S>(serial: &mut S, cb: &mut CircularBuffer) //! where //! S: hal::serial::Write<u8, Error = Void>, //! { //! loop { //! if let Some(byte) = cb.peek() { //! match serial.write(*byte) { //! Err(nb::Error::Other(_)) => unreachable!(), //! Err(nb::Error::WouldBlock) => return, //! Ok(()) => {}, // keep flushing data //! } //! } //! //! cb.pop(); //! } //! } //! //! // The stuff below could be in some other crate //! //! /// Global singleton //! pub struct BufferedSerial1; //! //! // NOTE private //! static BUFFER1: Mutex<CircularBuffer> = { //! // .. //! # Mutex(CircularBuffer) //! }; //! static SERIAL1: Mutex<Serial1> = { //! // .. //! # Mutex(Serial1) //! }; //! //! impl BufferedSerial1 { //! pub fn write(&self, byte: u8) { //! self.write_all(&[byte]) //! } //! //! pub fn write_all(&self, bytes: &[u8]) { //! let mut buffer = BUFFER1.lock(); //! for byte in bytes { //! buffer.push(*byte).expect("buffer overrun"); //! } //! // omitted: pend / enable interrupt_handler //! } //! } //! //! fn interrupt_handler() { //! let mut serial = SERIAL1.lock(); //! let mut buffer = BUFFER1.lock(); //! //! flush(&mut *serial, &mut buffer); //! } //! //! # struct Mutex<T>(T); //! # impl<T> Mutex<T> { //! # fn lock(&self) -> RefMut<T> { unimplemented!() } //! # } //! # struct RefMut<'a, T>(&'a mut T) where T: 'a; //! # impl<'a, T> ::std::ops::Deref for RefMut<'a, T> { //! # type Target = T; //! # fn deref(&self) -> &T { self.0 } //! # } //! # impl<'a, T> ::std::ops::DerefMut for RefMut<'a, T> { //! # fn deref_mut(&mut self) -> &mut T { self.0 } //! # } //! # struct Serial1; //! # impl ::hal::serial::Write<u8> for Serial1 { //! # type Error = Void; //! # fn write(&mut self, _: u8) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # fn flush(&mut self) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } //! # } //! # struct CircularBuffer; //! # impl CircularBuffer { //! # pub fn peek(&mut self) -> Option<&u8> { None } //! # pub fn pop(&mut self) -> Option<u8> { None } //! # pub fn push(&mut self, _: u8) -> Result<(), ()> { Ok(()) } //! # } //! //! # fn main() {} //! ``` #![deny(missing_docs)] #![no_std] #[macro_use] extern crate nb; extern crate void; pub mod adc; pub mod blocking; pub mod digital; pub mod fmt; pub mod prelude; pub mod serial; pub mod spi; pub mod timer; pub mod watchdog; /// Input capture /// /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* /// /// # Examples /// /// You can use this interface to measure the period of (quasi) periodic signals /// / events /// /// ``` /// extern crate embedded_hal as hal; /// #[macro_use(block)] /// extern crate nb; /// /// use hal::prelude::*; /// /// fn main() { /// let mut capture: Capture1 = { /// // .. /// # Capture1 /// }; /// /// capture.set_resolution(1.ms()); /// /// let before = block!(capture.capture(Channel::_1)).unwrap(); /// let after = block!(capture.capture(Channel::_1)).unwrap(); /// /// let period = after.wrapping_sub(before); /// /// println!("Period: {} ms", period); /// } /// /// # extern crate void; /// # use void::Void; /// # struct MilliSeconds(u32); /// # trait U32Ext { fn ms(self) -> MilliSeconds; } /// # impl U32Ext for u32 { fn ms(self) -> MilliSeconds { MilliSeconds(self) } } /// # struct Capture1; /// # enum Channel { _1 } /// # impl hal::Capture for Capture1 { /// # type Capture = u16; /// # type Channel = Channel; /// # type Error = Void; /// # type Time = MilliSeconds; /// # fn capture(&mut self, _: Channel) -> ::nb::Result<u16, Void> { Ok(0) } /// # fn disable(&mut self, _: Channel) { unimplemented!() } /// # fn enable(&mut self, _: Channel) { unimplemented!() } /// # fn get_resolution(&self) -> MilliSeconds { unimplemented!() } /// # fn set_resolution<T>(&mut self, _: T) where T: Into<MilliSeconds> {} /// # } /// ``` #[cfg(feature = "unproven")] // reason: pre-singletons API. With singletons a `CapturePin` (cf. `PwmPin`) trait seems more // appropriate pub trait Capture { /// Enumeration of `Capture` errors /// /// Possible errors: /// /// - *overcapture*, the previous capture value was overwritten because it /// was not read in a timely manner type Error; /// Enumeration of channels that can be used with this `Capture` interface /// /// If your `Capture` interface has no channels you can use the type `()` /// here type Channel; /// A time unit that can be converted into a human time unit (e.g. seconds) type Time; /// The type of the value returned by `capture` type Capture; /// "Waits" for a transition in the capture `channel` and returns the value /// of counter at that instant /// /// NOTE that you must multiply the returned value by the *resolution* of /// this `Capture` interface to get a human time unit (e.g. seconds) fn capture(&mut self, channel: Self::Channel) -> nb::Result<Self::Capture, Self::Error>; /// Disables a capture `channel` fn disable(&mut self, channel: Self::Channel); /// Enables a capture `channel` fn enable(&mut self, channel: Self::Channel); /// Returns the current resolution fn get_resolution(&self) -> Self::Time; /// Sets the resolution of the capture timer fn set_resolution<R>(&mut self, resolution: R) where R: Into<Self::Time>; } /// Pulse Width Modulation /// /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* /// /// # Examples /// /// Use this interface to control the power output of some actuator /// /// ``` /// extern crate embedded_hal as hal; /// /// use hal::prelude::*; /// /// fn main() { /// let mut pwm: Pwm1 = { /// // .. /// # Pwm1 /// }; /// /// pwm.set_period(1.khz()); /// /// let max_duty = pwm.get_max_duty(); /// /// // brightest LED /// pwm.set_duty(Channel::_1, max_duty); /// /// // dimmer LED /// pwm.set_duty(Channel::_2, max_duty / 4); /// } /// /// # struct KiloHertz(u32); /// # trait U32Ext { fn khz(self) -> KiloHertz; } /// # impl U32Ext for u32 { fn khz(self) -> KiloHertz { KiloHertz(self) } } /// # enum Channel { _1, _2 } /// # struct Pwm1; /// # impl hal::Pwm for Pwm1 { /// # type Channel = Channel; /// # type Time = KiloHertz; /// # type Duty = u16; /// # fn disable(&mut self, _: Channel) { unimplemented!() } /// # fn enable(&mut self, _: Channel) { unimplemented!() } /// # fn get_duty(&self, _: Channel) -> u16 { unimplemented!() } /// # fn get_max_duty(&self) -> u16 { 0 } /// # fn set_duty(&mut self, _: Channel, _: u16) {} /// # fn get_period(&self) -> KiloHertz { unimplemented!() } /// # fn set_period<T>(&mut self, _: T) where T: Into<KiloHertz> {} /// # } /// ``` #[cfg(feature = "unproven")] // reason: pre-singletons API. The `PwmPin` trait seems more useful because it models independent // PWM channels. Here a certain number of channels are multiplexed in a single implementer. pub trait Pwm { /// Enumeration of channels that can be used with this `Pwm` interface /// /// If your `Pwm` interface has no channels you can use the type `()` /// here type Channel; /// A time unit that can be converted into a human time unit (e.g. seconds) type Time; /// Type for the `duty` methods /// /// The implementer is free to choose a float / percentage representation /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) type Duty; /// Disables a PWM `channel` fn disable(&mut self, channel: Self::Channel); /// Enables a PWM `channel` fn enable(&mut self, channel: Self::Channel); /// Returns the current PWM period fn get_period(&self) -> Self::Time; /// Returns the current duty cycle fn get_duty(&self, channel: Self::Channel) -> Self::Duty; /// Returns the maximum duty cycle value fn get_max_duty(&self) -> Self::Duty; /// Sets a new duty cycle fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty); /// Sets a new PWM period fn set_period<P>(&mut self, period: P) where P: Into<Self::Time>; } /// A single PWM channel / pin /// /// See `Pwm` for details pub trait PwmPin { /// Type for the `duty` methods /// /// The implementer is free to choose a float / percentage representation /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) type Duty; /// Disables a PWM `channel` fn disable(&mut self); /// Enables a PWM `channel` fn enable(&mut self); /// Returns the current duty cycle fn get_duty(&self) -> Self::Duty; /// Returns the maximum duty cycle value fn get_max_duty(&self) -> Self::Duty; /// Sets a new duty cycle fn set_duty(&mut self, duty: Self::Duty); } /// Quadrature encoder interface /// /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* /// /// # Examples /// /// You can use this interface to measure the speed of a motor /// /// ``` /// extern crate embedded_hal as hal; /// #[macro_use(block)] /// extern crate nb; /// /// use hal::prelude::*; /// /// fn main() { /// let mut qei: Qei1 = { /// // .. /// # Qei1 /// }; /// let mut timer: Timer6 = { /// // .. /// # Timer6 /// }; /// /// /// let before = qei.count(); /// timer.start(1.s()); /// block!(timer.wait()); /// let after = qei.count(); /// /// let speed = after.wrapping_sub(before); /// println!("Speed: {} pulses per second", speed); /// } /// /// # extern crate void; /// # use void::Void; /// # struct Seconds(u32); /// # trait U32Ext { fn s(self) -> Seconds; } /// # impl U32Ext for u32 { fn s(self) -> Seconds { Seconds(self) } } /// # struct Qei1; /// # impl hal::Qei for Qei1 { /// # type Count = u16; /// # fn count(&self) -> u16 { 0 } /// # fn direction(&self) -> ::hal::Direction { unimplemented!() } /// # } /// # struct Timer6; /// # impl hal::timer::CountDown for Timer6 { /// # type Time = Seconds; /// # fn start<T>(&mut self, _: T) where T: Into<Seconds> {} /// # fn wait(&mut self) -> ::nb::Result<(), Void> { Ok(()) } /// # } /// ``` #[cfg(feature = "unproven")] // reason: needs to be re-evaluated in the new singletons world. At the very least this needs a // reference implementation pub trait Qei { /// The type of the value returned by `count` type Count; /// Returns the current pulse count of the encoder fn count(&self) -> Self::Count; /// Returns the count direction fn direction(&self) -> Direction; } /// Count direction /// /// *This enumeration is available if embedded-hal is built with the `"unproven"` feature.* #[derive(Clone, Copy, Debug, Eq, PartialEq)] #[cfg(feature = "unproven")] // reason: part of the unproven `Qei` interface pub enum Direction { /// 3, 2, 1 Downcounting, /// 1, 2, 3 Upcounting, }